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Abstract

Compact finite-difference schemes have been recently used in several Direct Numerical Simulations of turbulent

flows, since they can achieve high-order accuracy and high resolution without exceedingly increasing the size of the

computational stencil. The development of compact finite-volume schemes is more involved, due to the appearance of

surface and volume integrals. While Pereira et al. [J. Comput. Phys. 167 (2001)] and Smirnov et al. [AIAA Paper, 2546,

2001] focused on collocated grids, in this paper we use the staggered grid arrangement. Compact schemes can be tuned

to achieve very high resolution for a given formal order of accuracy. We develop and test high-resolution schemes by

following a procedure proposed by Lele [J. Comput. Phys. 103 (1992)] which, to the best of our knowledge, has not yet

been applied to compact finite-volume methods on staggered grids. Results from several one- and two-dimensional

simulations for the scalar transport and Navier–Stokes equations are presented, showing that the proposed method is

capable to accurately reproduce complex steady and unsteady flows.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Turbulent flows are characterized by a wide range of time and length scales [1], which can be numerically

resolved by using small grid spacings and time steps. Resolution can also be improved by using highly

accurate schemes, either in space or in time. This work focuses on the application of compact finite-volume

schemes (CFV schemes hereafter) to the numerical simulation of thermo-fluid dynamics problems.

Several authors [2–7] have contributed to the development of compact finite-difference schemes; they

can achieve high-order accuracy and high resolution without exceedingly increasing the size of the

computational stencil, and are more flexible in terms of geometry and boundary conditions than spectral
methods. The computational efficiency of compact schemes is highly dependent on the specific

implementation. For example, Meinke et al. [8] report that the computational cost of solving the
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three-dimensional compressible Navier–Stokes equations, by a sixth-order compact finite-difference

scheme, is about 1.5 times higher than using a combination of a second-order scheme for the viscous

term and the AUSM upwind scheme [9] for the advective term. Meinke et al. [8] use a five-step explicit
Runge–Kutta time-stepping scheme. Compact finite-difference schemes have been recently used in several

DNS of turbulent flows. Few selected examples include the DNS of a compressible, subsonic boundary

layer around an airfoil [10], applications concerning unsteady flows in complex geometries [11] and a

DNS of jet noise [12].

As remarked by Morinishi et al. [13], experience has shown that the convective terms must conserve

kinetic-energy if an incompressible, unsteady flow simulation is to be both stable and free of numerical

dissipation. Lele [7] derived conservative compact finite-difference schemes on uniform grids. Second-order

finite-difference and finite-volume schemes on staggered grids are known to intrinsically conserve kinetic
energy, on uniform Cartesian grids [14,15]. High-order, kinetic energy conserving, finite-difference schemes

on uniform staggered grids were developed by Morinishi et al. [13], and extended to non-uniform Cartesian

grids by Vasilyev [15]. Nagarajan et al. [16] compared collocated and staggered compact finite-difference

algorithms for the simulation of compressible flows, and showed that the staggered approach is definitely

more robust, due to its better conservation properties. No investigation of the conservation properties of

collocated compact finite-volume schemes has been attempted up to date, to the best of our knowledge.

Another favorable property of staggered grids is that the pressure–velocity coupling is inherently enforced

[17]. Pereira et al. [18] and Smirnov et al. [19] used a collocated grid arrangement; the pressure–velocity
coupling was enforced by allowing for odd number of control volumes along each coordinate direction.

Even though the effectiveness of this method of avoiding pressure–velocity decoupling can be analytically

proved only for uniform grids and periodic or Dirichlet boundary conditions [18], the results of several

simulations performed by Pereira et al. [18] and Smirnov et al. [19] do not show any unphysical oscillation,

which could be attributed to pressure–velocity decoupling. A further attractive property of finite-volume

and finite-difference schemes on staggered grids is that no extrapolation is needed, near boundaries where

the velocity field is imposed, in order to represent the pressure gradient term in the momentum equations

[17].
Although collocated grids present several advantages (lower memory requirements, easier book-

keeping), in view of the above discussion we believe that the development of compact finite-volume

schemes on staggered grids should deserve some attention, since they are good candidates for what

concernes conservation of kinetic-energy. We use the staggered variable arrangement introduced by

Harlow and Welch [14], which locate scalar variables, like pressure and temperature, at the centroid of

each control volume, while the normal velocity components are assigned to the centroids of the cell

faces. In addition, we devise an efficient approach for the solution of the unsteady Navier–Stokes

equations. Semi-implicit time-stepping schemes, like the low storage Runge–Kutta by Le and Moin [20]
and the Crank–Nicolson/Adams–Bashforth, are used in conjunction with the Alternate Direction Im-

plicit (ADI) method [17]. The discrete conservation equations and the compact difference equations,

required for the approximation of the diffusive fluxes, are solved simultaneously by using a direct

method for almost banded coefficient matrices, developed following and extending ideas first proposed

by Temperton [21].

Cell-averaged values and fluxes are assumed as main unknowns, an approach already adopted by Pereira

et al. [18] and by Smirnov et al. [19]. This practice is very natural in finite-volume applications, since it

avoids introducing complicate compact-quadrature formulas, which would enlarge the computational
molecule and, in multi-dimensional applications, would strengthen the coupling between different coor-

dinate directions. Point values of each quantity can be recovered from cell-averaged values once and for all

at the end of a simulation, by a deconvolution process [18].

Symmetric spatial-discretization schemes are used in the interior of the computational domain, while

asymmetric schemes are applied only for the discretization of Dirichlet or Neumann boundary condi-
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tions. Symmetric compact schemes do not introduce numerical diffusivity, but are affected by spurious

oscillations on coarse grids [7]. This characteristic of compact schemes is due to the sensitivity to aliasing

errors, which affects high-resolution symmetric schemes [16]. In DNS applications, accuracy and reso-
lution requirements limit the maximum value of the cell P�eclet number, so that the appearance of wiggles

is, or at least should be, a quite rare circumstance. In addition, as pointed out by Lilek and Peri�c [22], in

common practice wiggles usually arise for values of the cell P�eclet number which are higher than those

expected from theory. In critical applications, the onset of wiggles can be kept under control by several

techniques. Compact low-pass filters were first applied by Lele [7], while Jiang et al. [23] developed the

Weighted Compact Schemes for the simulation of compressible flows in the presence of shock waves. We

investigate both analytically and numerically the boundedness of symmetric CFV schemes, which are

shown to be quite prone to develop wiggles on coarse grids. The compact filtering procedure by Lele [7]
proves effective in damping such unphysical oscillations, allowing for solutions of remarkable accuracy

even on very coarse grids. This approach has been applied also by Smirnov et al. [19] in the framework

of compact finite-volume methods.

For a given order of accuracy, compact schemes can be tuned to achieve spectral-like resolution [7]. We

develop and test spectral-like schemes for both interpolation and differentiation; they are derived following

a procedure proposed by Lele [7], and optimized by Kim and Lee [24] and by Kobayashi [25].

Although most of the illustrated developments can be extended to boundary-fitted grids, by introducing

general coordinate transformations, in this paper the proposed methodology is applied to non-uniform
Cartesian grids. We follow the approach based on a coordinate transformation between the physical and

the computational space. The alternative strategy, based on direct approximation of the conservation

equations in the physical space, was followed by Smirnov et al. [19], and proved effective in dealing with

structured non-uniform grids. The motivations for adopting a coordinate transformation are addressed in

the paper.

The proposed methodology has been applied to several one- and two-dimensional test cases, both for the

scalar transport equation and the Navier–Stokes equations. The one-dimensional tests regard both purely

advective and purely diffusive problems, and provide simple indications about the type of problems, which
could greatly benefit of the good resolution properties of CFV schemes. The two-dimensional, purely

advective scalar transport equation is solved for two standard configurations, the advection of a step

discontinuity by a velocity inclined with respect to the computational grid, and the advection of a cone

around a circular path. These simulations are particularly revealing of the accuracy and resolution char-

acteristics of the CFV schemes. The good resolution properties are confirmed by the ability of reproducing

sharp discontinuities, like a step and sharp cone in the distribution of a scalar field. In addition, the ap-

pearence of weak unphysical oscillations confirms the expected fact that symmetric CFV schemes need

some special treatment in order to keep under control aliasing errors. This issue has been confirmed in the
simulation of the lid-driven cavity. As long as the Reynolds number equals 1000, no special treatment is

required in order to obtain a stable simulation, free of wiggles; when the Reynolds number is increased up

to 5000, the average kinetic energy increases, until the simulation blows up. It is shown that the application

of a high-order compact filter to the advective term is sufficient, in the reported flow configurations, to

obtain stable simulations. In order to test the capability of the proposed CFV method to reproduce un-

steady phenomena, we have simulated the natural convection flow of a perfectly conductive fluid in a

rectangular cavity, with adiabatic horizontal walls, and vertical walls kept at constant, different tempera-

tures. The accuracy of the proposed algorithm has been checked by comparing the numerical against the
analytical solution, for the flow configuration of decaying Taylor–Green vortices, showing that sixth-order

accuracy is achieved.

The results of this study are encouraging: the proposed high-order CFV approach on staggered grids

combines a number of advantages like high resolution, flexibility in implementing different boundary

conditions and the possibility to be applied, effectively and accurately, to non-uniform grids.
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2. The advection–diffusion equation

In order to introduce the main features of CFV schemes, in this section we address the solution of the
two-dimensional, incompressible advection–diffusion transport equation for a passive scalar

ou
ot
þr � uuð Þ ¼ 1

Pe
r2u; ð1Þ

where Pe is the P�eclet number. By adopting the Runge–Kutta time-stepping scheme by Le and Moin [20],

Eq. (1) can be cast in semi-discrete form

uðkþ1Þ � uðkÞ þ Dt cðkÞHðkÞ
h

þ fðkÞHðk�1Þ
i
¼ aðkÞDt Dðkþ1Þ

�
þDðkÞ

�
; ð2Þ

where

HðkÞ ¼ r � uuð ÞðkÞ ¼ o

ox
uuð ÞðkÞ þ o

oy
vuð ÞðkÞ;
DðkÞ ¼ 1

Pe
r2uðkÞ ¼ 1

Pe
o2u
ox2

ðkÞ
"

þ o2u
oy2

ðkÞ
#
:

The index k refers to the present Runge–Kutta substep: k ¼ 1; 2; 3, with k ¼ 0 and k ¼ 3 representing the

current and the next time steps, respectively. The coefficients aðkÞ, cðkÞ, fðkÞ are listed in Table 1.
In Eq. (2) the two coordinate directions are still coupled by the diffusive term Dðkþ1Þ. The Alternate

Direction Implicit approach [17] is adopted in order to render the solution process independent along each

coordinate direction, within each Runge–Kutta substep

uðkþ1;hþ1Þ � uðkÞ þ Dt cðkÞHðkÞ
�

þ fðkÞHðk�1Þ
�
¼ aðkÞDt Dðkþ1;hþ1Þx

�
þDðkþ1;hÞy þDðkÞ

�
ð3Þ

followed by

uðkþ1;hþ2Þ � uðkÞ þ Dt cðkÞHðkÞ
�

þ fðkÞHðk�1Þ
�
¼ aðkÞDt Dðkþ1;hþ1Þx

�
þDðkþ1;hþ2Þy þDðkÞ

�
: ð4Þ

At each time-step, three Runge–Kutta substeps are performed; due to the implicit treatment of the diffusive

term each substep requires internal iterations, represented in (3) and (4) by the iteration counter h.
In finite-volume methods Eqs. (3) and (4) are integrated over a control volume; whenever possible, the

volume integrals are then modified according to the Gauss� theorem:Z
c:v:

H dV ¼
Z
c:v:
r � uuð Þ dV ¼

Z
S
uu � n dS; ð5Þ
Table 1

Coefficients for the Runge–Kutta time-stepping scheme [20]

a1 ¼ 4=15 a2 ¼ 1=15 a3 ¼ 1=6

c1 ¼ 8=15 c2 ¼ 5=12 c3 ¼ 3=4

f1 ¼ 0 f2 ¼ �17=60 f3 ¼ �5=12
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Z
c:v:

D dV ¼ 1

Pe

Z
c:v:
r2u dV ¼ 1

Pe

Z
S
ru � n dS: ð6Þ

The resulting equations are discretized on a staggered grid, sketched in Fig. 1. A coordinate transformation

relates the physical with the computational space in such a way that, in general, the image of the centroid of

a computational cell is not located in the centroid of the corresponding physical cell. Nevertheless, we will
always refer to it as cell centre. With reference to Fig. 1, we define the following quantities in the com-

putational space:

ung
i;j ¼

1

DniDgj

Z gjþ1=2

gj�1=2

Z niþ1=2

ni�1=2

u n; gð Þ dn dg; ð7Þ
ug
iþ1=2;j ¼

1

Dgj

Z gjþ1=2
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u niþ1=2; g
� �

dg; ð8Þ
un
i;jþ1=2 ¼

1

Dni
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� �

dn; ð9Þ
ou
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Dgj
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ou
on
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� �
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ou
og

n
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¼ 1

Dni
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ou
og

n; gjþ1=2
� �

dn: ð11Þ

Corresponding quantities are defined in the physical space; in this case, the integrals extend over, and are

scaled by, the physical cell width. The advective and diffusive fluxes (7)–(11) are approximated by compact

differentiation and interpolation formulas.
We assume the average values of u onto each computational control volume as main unknowns. The

point values, defined at the cell centres, are recovered once and for all at the end of the simulation by a
Fig. 1. Geometrical quantities used for the description of a non-uniform Cartesian grid.
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deconvolution procedure [18]. This approach seems very natural, in that it recognizes that fluxes and cell-

averaged quantities are the basic variables arising from a finite-volume discretization.

2.1. Compact approximation of fluxes

The diffusive fluxes along the n direction, Eq. (10), are approximated to fourth-order accuracy by the

following symmetric compact equation, valid for uniform Cartesian grids:

a1
ou
on

g

iþ3=2;j
þ ou

on

g

iþ1=2;j
þ a1

ou
on

g

i�1=2;j
¼ a2

Dn
ung

iþ1;j

�
� ung

i;j

�
: ð12Þ

The unknown parameters a1, a2 are evaluated by comparing the truncated Taylor series on each side of (12)

a1 ¼
1

10
; a2 ¼

6

5
:

All the compact approximations presented in this paper have been derived with a similar approach, and the

coefficients are listed in Table 2. Whereas Eq. (12) is still applicable near the boundaries when Neumann

boundary conditions are enforced on u, a fourth-order asymmetric formula is required near the Dirichlet
boundaries. At the left boundary a fourth-order compact approximation reads

ou
on

g

i�1=2;j
þ a3

ou
on

g

iþ1=2;j
þ a4

ou
on

g

iþ3=2;j
¼ 1

Dn
a5u

g
i�1=2;j

�
þ a6u

ng
i;j þ a7u

ng
iþ1;j þ a8u

ng
iþ2;j

�
: ð13Þ

The variable ug
i�1=2;j represents the assigned face-averaged value on the left boundary. On the right

boundary, the specular version of (13) can be used.

The evaluation of the advective fluxes requires interpolation formulas, relating the cell face variables

ug
iþ1=2;j to the main unknowns ung

i;j . A symmetric, fourth-order compact interpolation scheme can be devised

as

a9u
g
i�1=2;j þ ug

iþ1=2;j þ a9u
g
iþ3=2;j ¼ a10 ung

i;j

�
þ ung

iþ1;j

�
: ð14Þ
Table 2

List of coefficients for the compact equations derived in the paper

a1 ¼ 1=10 a2 ¼ 6=5 a3 ¼ 52 a4 ¼ 23=2

a5 ¼ 35=2 a6 ¼ �1033=12 a7 ¼ 767=12 a8 ¼ 14=3

a9 ¼ 1=4 a10 ¼ 3=4 a11 ¼ 4=3 a12 ¼ 1=6

a13 ¼ �1=6 a14 ¼ 23=12 a15 ¼ 7=12 a16 ¼ 9=62

a17 ¼ 17=186 a18 ¼ 103=93 a19 ¼ 73=557 a20 ¼ �69=2785
a21 ¼ 13=3899 a22 ¼ �3568=19495 a23 ¼ 720=557 a24 ¼ �120=367
a25 ¼ �7=367 a26 ¼ 17=367 a27 ¼ 391=367 a28 ¼ �151=367
a29 ¼ 1=22 a30 ¼ 12=11 a31 ¼ 15 a32 ¼ �16=15
a33 ¼ �15 a34 ¼ 50=3 a35 ¼ �3=5 a36 ¼ 1=6

a37 ¼ 2=3 a38 ¼ 9=11 a39 ¼ �3=11 a40 ¼ 18=11

a41 ¼ 2=11 a42 ¼ 1=48 a43 ¼ 11=38 a44 ¼ 137=114

a45 ¼ 85=228 a46 ¼ �23=228 a47 ¼ 1=57 a48 ¼ 1=2

a49 ¼ 1=20 a50 ¼ 527=600 a51 ¼ 17=100 a52 ¼ �1=600
a53 ¼ 10=21 a54 ¼ 5=126 a55 ¼ 5=6 a56 ¼ 5=28

a57 ¼ 1=252 a58 ¼ 334=899 a59 ¼ 43=1798 a60 ¼ 14335=16182

a61 ¼ 2375=8091 a62 ¼ 79=16182 a63 ¼ 96850=288529 a64 ¼ 9675=577058

a65 ¼ 1297462=4327935 a66 ¼ 69049=8655870 a67 ¼ 1571529=1442645
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Eq. (14) can be applied near Dirichlet boundaries as well. A fifth-order compact interpolation formula, to

be applied close to Neumann boundaries, is

ug
i�1=2;j þ a11u

g
iþ1=2;j þ a12u

g
iþ3=2;j ¼ a13Dn

ou
on

g

i�1=2;j
þ a14u

ng
i;j þ a15u

ng
iþ1;j: ð15Þ
2.2. Deconvolution

At the end of the simulation, we recover the point values ui;j from the cell-averaged values ung
i;j by a

deconvolution procedure. In the one-dimensional case, a sixth-order deconvolution scheme is

a16uiþ1 þ ui þ a16ui�1 ¼ a17u
n
iþ1 þ a18un

i þ a17u
n
i�1; ð16Þ
ui þ a19uiþ1 þ a20uiþ2 þ a21uiþ3 ¼ a22ui�1=2 þ a23un
i ; ð17Þ
ui þ a24uiþ1 þ a25uiþ2 ¼ a26
ou
on i�1=2

Dxþ a27un
i þ a28u

n
iþ1: ð18Þ

Eq. (16) can be used in the domain interior; Eqs. (17) and (18) are used near the Dirichlet and the Neumann

boundaries, respectively. Two- and three-dimensional deconvolutions can be performed by repeated ap-

plication of (16)–(18) along each coordinate direction, when ADI or similar methods are adopted.
2.3. Simultaneous solution of physical and compact equations

Semi-implicit time-stepping schemes provide for an implicit treatment of the diffusive term; thus, the

compact differentiation equations have to be solved simultaneously with the discrete transport equations,

leading to an algebraic linear system with 2N unknowns, being N the number of control volumes along each

coordinate direction. In order to minimize the bandwidth of the resulting coefficient matrix, the equations

are sorted cell-wise: for each i ¼ 1; . . . ;N , two equations are considered: the first is the physical equation

associated with the ith cell; the second is the compact equation for the diffusive flux across the iþ 1=2 cell
face. The unknowns are arranged consequently: first un

i , then ou
g
=oniþ1=2. This convention leads to a penta-

diagonal coefficient matrix, except for the first and last few rows, which can include more terms due to the

use of asymmetric compact equations near the boundaries. The resulting algebraic linear system can be

efficiently solved by the method described in Appendix B. Two- and three-dimensional unsteady advection–

diffusion equations are reduced to a sequence of one-dimensional problems by the ADI or similar tech-

niques [17].
2.4. von Neumann analysis of CFV methods

In this section, we investigate the resolution capability of various spatial-discretization schemes by

means of the von Neumann analysis. We address independently diffusion and advection-dominated

equations.

The one-dimensional, unsteady diffusion problem with periodic boundary conditions reads

ou
ot ¼ C o2u

ox2 ; C > 0;
u x; tð Þ ¼ u xþ L; tð Þ 8x

�
ð19Þ
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A Fourier wave is assumed as initial condition

uðx; 0Þ ¼ e2pikx=L; k 2N: ð20Þ

The analytical solution of (19) and (20) can be readily obtained as

uðx; tÞ ¼ e�4p
2k2Ct=L2e2pikx=L: ð21Þ

We introduce semi-discrete approximations of (19) and (20), in that the time integration is performed

analytically. The computational grid is uniform, with N cells covering the interval ½0; L�. In order to cast the

problem (19) in a suitable form for finite-volume discretization, we first integrate over the generic control

volume

oux

ot

����
j

Dx ¼ C
ou
ox

����
jþ1=2

 
� ou

ox

����
j�1=2

!
: ð22Þ

The unknown quantity in Eq. (22) is the CV-averaged value ux
j , which is subject to periodic boundary

conditions. Eq. (22) can be cast in matrix form as

oux
d

ot
¼ C

Dx
A
ou

ox

����
dþ1=2

; ð23Þ

where

ux
d ¼

ux
1

ux
2

..

.

ux
N

8>>><>>>:
9>>>=>>>;;

ou

oxdþ1=2
¼

ou
ox

��
3=2

ou
ox

��
5=2

..

.

ou
ox

��
Nþ1=2

8>>>>><>>>>>:

9>>>>>=>>>>>;
; A ¼

1 �1
�1 1

� � �
�1 1

�1 1

266664
377775 2MN�N ;

where MN�N indicates the space of an N � N real matrices. A suitable initial condition for (23) is obtained

by averaging (20) on each control volume

ux
jðt ¼ 0Þ ¼ 1

Dx

Z jþ1=2ð ÞDx

j�1=2ð ÞDx
e2pikx=L dx ¼ sin kp=N

kp=N
e2pijk=N : ð24Þ

The exact cell-averaged solution at time t is

ux
jðtÞ ¼ e�4p

2k2Ct=L2 sin kp=N
kp=N

e2pijk=N : ð25Þ

A spatial-discretization scheme for the x-derivative provides a linear relation between ou=oxdþ1=2 and ux
d,

which can be expressed in matrix form as

D
ou

oxdþ1=2
¼ 1

Dx
Bux

d; D;B 2MN�N : ð26Þ

We compare the standard second-order (ST2) with the fourth-order CFV method presented in Section 2

(CS4); the coefficient matrices D and B assume a general form
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D ¼

1 a a

a 1 a

� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �

a 1 a

a a 1

266666666666664

377777777777775
;

B ¼ b

�1 1

�1 1

� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � �

�1 1

1 �1

266666666666664

377777777777775
:

The coefficients a and b are

As could have been expected, due to the imposition of periodic boundary conditions, D and B are

circulant matrices [26]. Matrix D can be inverted to get D�1; Eq. (23) is rewritten as

oux
d

ot
¼ C

Dxð Þ2
AD�1Bux

d: ð27Þ

The eigenvalues of a tridiagonal, circulant matrix are [26]

kðkÞ ¼ bþ að þ cÞ cos 2kp
N

	 

� i að � cÞ sin 2kp

N

	 

; k ¼ 0; . . . ;N � 1;

where a, b and c are the subdiagonal, diagonal and superdiagonal terms, respectively. Thus

kðkÞA ¼ 1� e�2pik=N ;

kðkÞD ¼ 1þ 2a cos
2kp
N

	 

;

kðkÞB ¼ b
�
� 1þ e2pik=N

�
:

ð28Þ

The eigenvalues of AD�1B are thus

kðkÞ
AD�1B

¼ F ðkÞ ¼ kðkÞA kðkÞB

kðkÞD

¼ �4b sin2 kp=Nð Þ
1þ 2a cos 2kp=Nð Þ : ð29Þ

Scheme a b

ST2 0 1

CS4 1=10 6=5
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The eigenvectors of an N � N circulant matrix are independent of the actual coefficients

wðkÞ ¼ wðkÞj

n o
¼ e2pijk=N
� �

; j; k ¼ 0; . . . ;N � 1: ð30Þ

By taking into account the initial condition (24), and observing that the eigenvectors (30) form a basis, the

solution of (27) can be readily obtained as

ux
jðtÞ ¼

sin kp=Nð Þ
kp=N

e
F ðkÞ Ct

Dx2e2pikj=N : ð31Þ

By comparing (31) with (25), it turns out that the ratio

HðkÞ ¼ �F ðkÞ=ð4p2k2=N 2Þ

represents a suitable measure of the error introduced by the spatial discretization, since it equals unity for

the exact solution. By introducing the modified wavenumber ek ¼ 2kp=N ¼ 2kpDx=L, the function HðekÞ
reads

H ek� �
¼ 4b

sin2 ek=2� �
ek2 1þ 2a cos ek� �� � ; ek 2 0; p½ �: ð32Þ

The error functions 1� HðekÞ, obtained by the ST2 and CS4 schemes, are compared in Fig. 2. It is evident
that they share the common behavior of reducing the effective diffusivity; that is, the damping of the initial

solution is slower than expected. The CS4 behaves much better than the ST2 scheme on the whole

wavenumber range.

In Fig. 3 we compare the absolute error, derived by the von Neumann analysis, for both the CS4 and the

ST2 schemes as functions of the dimensionless wavenumber kDx and the Fourier number Fo ¼ Ct=Dx2. It
can be observed that, where Fo is very large, the error is negligibly small at all wavenumbers, for both

approaches. Only for small values of Fo the ST2 scheme behaves considerably worse than the CS4 scheme

and affects a wider range of wavenumbers.
Fig. 2. Error function for two different spatial-discretization schemes considered in Section 2.4 for the diffusion equation. Solid line:

ST2; dashed line: CS4.
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Fig. 3. Absolute error as a function of kDx and Fo ¼ Ct=Dx2: (a) CS4; (b) ST2.
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As a numerical test, we solved Eq. (19) by imposing the initial condition

uðx; 0Þ ¼ 1� cos 2pxð Þ; x 2 ½0; 1�: ð33Þ

This function can be developed as a sine-series, so that components of all wavenumbers are present in the

final solution. The general analytical solution can be expressed as

uðx; tÞ ¼
X1
n¼0

Ane
�ð2nþ1Þ

2p2 t
Pe sin 2nð½ þ 1Þpx�; ð34Þ

where

An ¼
8 � 1ð Þ2nþ1 � 1

2nþ 1ð Þp 2nþ 1ð Þ2 � 4
h i : ð35Þ

The comparison with the exact solution, not reported here, confirms the anti-diffusive character of the

considered schemes. The behavior of the CS4 scheme is not very different from that of the simpler ST2

scheme. Of course, the error is much smaller, as reported in Table 3. However, the physical phenomenon is

correctly reproduced by both methods. This is not surprising, since the largest resolution errors affect the
highest wavenumber components, which are more rapidly damped in diffusion-dominated transport phe-

nomena.

The ability of compact schemes to accurately resolve a wider range of wavenumbers becomes more

evident in the simulation of advection-dominated phenomena. We focus on the one-dimensional linear

advection equation, subject to periodic boundary conditions; a Fourier wave is assumed as initial condition

ou
ot þ c ou

ox ¼ 0;
uðxþ LÞ ¼ uðxÞ;
uðx; 0Þ ¼ e2pikx=L:

8<: ð36Þ
Table 3

Maximum and rms errors for the diffusion of the initial solution, given by Eq. (33), on a uniform grid with 32 control volumes

Scheme Max error rms Error

ST2 2:17� 10�3 1:23� 10�3

CS4 2:67� 10�5 1:56� 10�5

The diffusion equation reads otu ¼ ox;xu, which implies that the length-scale corresponds to the domain dimension L, while the time

is rendered non-dimensional as at=L2, being a the diffusion coefficient. The solution is advanced until the non-dimensional time t ¼ 0:1.
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The analytical solution of (36) is

ujðtÞ ¼ e2pik xj�ctð Þ=L: ð37Þ

The initial solution is transported in the positive x-direction by the advection velocity c. By similar argu-

ments as adopted for the 1D diffusion equation, it can be shown that the semi-discrete solution of (36) can
be expressed by

eujðtÞ ¼ e2pik xj�cetð Þ=L; ð38Þ

where ce is the effective advection velocity. By comparing (37) with (38) it turns out that the ratio of the

effective to the exact advection velocity can be expressed as a function of ek ¼ 2kpDx=L

ce
c
¼

2a sin ek� �
1þ 2a cos ek� �h iek : ð39Þ

As for the CS4 scheme, the coefficients a and a in (39) correspond to the coefficients a9 and a10 in the

compact interpolation equation (14) used to evaluate the advective fluxes, which is rewritten here for

convenience

auiþ3=2 þ uiþ1=2 þ aui�1=2 ¼ a ux
iþ1

�
þ ux

i

�
:

Values corresponding to the ST2 and CS4 schemes are as follows:

The velocity ratio (39), which accounts for the dispersion errors, has been evaluated for the ST2 and CS4

schemes and is plotted in Fig. 4. It is evident that the reduction of the advection velocity, characteristic of

symmetric spatial-discretization schemes [27], is modest for the CS4 scheme in a wide range of wave-

numbers.

Scheme a a

ST2 1/2 0
CS4 3/4 1/4
Fig. 4. Dispersion error represented by the ratio of the effective versus the exact advection velocity. Dashed line: CS4; solid line: ST2.
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3. Two-dimensional momentum equations

In this section, we present a CFV discretization of the Navier–Stokes equations for two-dimensional,
incompressible flows with constant properties, on a staggered, Cartesian non-uniform grid. The procedure

derives directly from that used for the advection–diffusion equation, reported in Section 2. Additional

complications have to be faced, concerning the placement and approximation of velocity components on a

staggered grid, the derivation of suitable approximations for pressure and the solution of a Poisson�s
equation, arising in the fractional-step procedure [28].

While both fourth- and sixth-order algorithms have been developed and tested, in this section we present

only sixth-order schemes, with the objective of showing that CFV methods of order higher than fourth can

be achieved.

3.1. Temporal discretization and fractional-step algorithm

The non-dimensional continuity and momentum equations, in Cartesian coordinates, read

r � u ¼ 0; ð40Þ
ou

ot
þr � uuð Þ þ rp ¼ 1

Re
r2uþ f: ð41Þ

By using a semi-implicit time-stepping scheme, in conjunction with the Projection 2 fractional-step algo-

rithm by Gresho [28], the following set of semi-discrete equations is obtained:

u� � un þ Dt
2

3r � uuð Þn
h

�r � uuð Þn�1
i
þ Dtrpn ¼ Dt

2Re
r2u�
�

þr2un
�
þ DtFnþ1; ð42Þ
r2/ ¼ r � u�; ð43Þ
unþ1 ¼ u� � r/; ð44Þ
pnþ1 ¼ pn þ 2/
Dt

: ð45Þ

The explicit Adams–Bashforth scheme is used for the advective term, while the implicit Crank–Nicolson

discretization is applied to the diffusive term. The provisional velocity u� does not respect continuity, and is
corrected in the projection step (44) in order to return the divergence-free velocity unþ1. The scalar field / is

usually addressed as pseudo-pressure, and is used both to enforce continuity in (44) and to obtain a first-

order accurate estimate for the pressure field at the new time-step in (45).

3.2. Spatial discretization of the provisional momentum equations

Eq. (42) is solved for the provisional velocity components ungiþ1=2;j and vngi;jþ1=2, averaged over suitable

control volumes in the computational space. The discretization process involves also face-averaged values,
like ugi;j, v

n
i;j, p

g
i;j and pni;j. The asterisk in u�, indicating provisional velocity components, will be dropped out

for notational convenience. In the staggered grid arrangement by Harlow and Welch [14] the control

volume for each velocity component is shifted along the corresponding coordinate direction. All scalar

variables, like pressure and pseudo-pressure, are associated with main control volumes. Fig. 5 helps in



Fig. 5. Arrangement of variables on a staggered grid.
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locating all variables on the computational plane. In the following sections, we address separately the

spatial discretization of each term in (42).

3.2.1. Transient term

In the CFV method, the transient terms, namely u or un, have to be averaged over a CV. With reference

to the u component, the averaging process is carried out as follows:

1

DVu

Z Z
DVu

u dV ¼ 1

DXu

Z Z
DXu

u det ðJÞ dn dg; ð46Þ

where DVu indicates a physical control volume, shifted along the coordinate direction x, corresponding to
the computational control volume DXu. The Jacobian matrix J is defined as

J ¼
ox
on

ox
og

oy
on

oy
og

 !
: ð47Þ

The metrics, i.e. the elements of the Jacobian matrix J, can be evaluated either analytically or numerically;

in this work we used an analytical calculation. Since we focus on Cartesian grids, the above expressions

simplify as follows:

x ¼ xðnÞ; y ¼ yðgÞ; J ¼
dx
dn 0

0 dy
dg

 !
; det ðJÞ ¼ dx

dn
dy
dg

: ð48Þ

For the numerical evaluation of Eq. (46) we devised a sixth-order, 2D integration scheme, which does not

rely on the simplifications (48)



M. Piller, E. Stalio / Journal of Computational Physics 197 (2004) 299–340 313
fg
DX

i;j ¼
1

DX

Z Z
DX

fg dn dg

� f
DX

i;j g
DX
i;j þ a42 f

DX

iþ1;j

�h
� f

DX

i�1;j

�
gDXiþ1;j
�

� gDXi�1;j
�
þ f

DX

i;jþ1

�
� f

DX

i;j�1

�
gDXi;jþ1
�

� gDXi;j�1
�i

; ð49Þ

where f and g represent generic functions/variables. Asymmetric equations, involving more terms, were

derived for the calculations near non-periodic boundaries.

The CV-average of det ðJÞ can be evaluated in the computational space by Eq. (49), which involves the

cell-averaged metrics. In the case of Cartesian grids, these quantities can be evaluated directly as

dx
dn

DXu

¼ 1

DnDg

Z niþ1

ni

Z gjþ1=2

gj�1=2

dx
dn

dn dg ¼ xiþ1 � xi
Dn

;

dy
dg

DXu

¼ yjþ1=2 � yj�1=2
Dg

:

Thus we substitute in Eq. (49), shifted half cell right

gDXu
iþ1=2;j ¼ det ðJÞDXu ¼ 1

DnDg
xiþ1ð � xiÞ yjþ1=2

�
� yj�1=2

�
;

f
DXu

iþ1=2;j ¼ uDXu
iþ1=2;j:

Even though Eq. (49) leads only to linear terms in u�DXu , we adopted a simpler, second-order accurate in

time, deferred-correction approach

uDVuiþ1=2;j ¼ uDXu
iþ1=2;j þ 2 uDVuiþ1=2;j

� �n�
� uDVuiþ1=2;j

� �n�1�
� 2 uDXu

iþ1=2;j

� �n
� uDXu

iþ1=2;j

� �n�1�
þO Dtð Þ2

h i�
: ð50Þ

The u-momentum equation is solved for the provisional velocity uDXu
iþ1=2;j, while all the remaining terms in

brackets contribute to the right-hand side.

It is worth remarking that Eq. (49) is a particular case of the more general approximation problem

fgh
DX ¼ 1

DX

Z Z
DX

fgh dX �L f
DX

d gDXd h
DX

d

� �
; ð51Þ

where L indicates linear combination of suitable cell-averaged quantities, while f
DX

d gDXd h
DX

d represents the

generic product of CV-averaged quantities. The averages can be taken over different CVs. Eq. (51) can be
interpreted as the problem of approximating integrals of a product of two functions

fgh
DX ¼ f ðghÞDX �L f

DX

d gh
DX

d

� �
; gh

DX �L gDXd h
DX

d

� �
: ð52Þ
3.2.2. Advective terms

We present the discretization procedure for the advective terms in the x-momentum equation. Appli-

cation to the other direction is straightforward. Integration of the advective terms in Eq. (42) over a

physical control volume leads toZ Z
DVu

r � uuð Þ dV ¼
Z
DSu

uu � n dS: ð53Þ

For 2D Cartesian grids, introducing the geographical notation for convenience
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Z
DSu

uu � n dS ¼
Z
DSeu

uu dy �
Z
DSwu

uu dy þ
Z
DSnu

uv dx�
Z
DSsu

uv dx; ð54Þ

where DSe
u, DS

w
u , DS

n
u , DS

s
u indicate the east, west, north and south faces of the control volume, respectively.

By introducing the coordinate transformation, Eq. (54) can be cast as follows:Z
DSu

uu � n dS ¼
Z
DSeu

uu
dy
dg

dg�
Z
DSwu

uu
dy
dg

dgþ
Z
DSnu

uv
dx
dn

dn�
Z
DSsu

uv
dx
dn

dn: ð55Þ

Each integral in (55) is evaluated by repeated application of compact, 1D averaging schemes. A sixth-order

scheme for averaging along g, applicable to internal control volumes, reads

fg
g

j þa43 fg
g

jþ1

�
þ fg

g

j�1

�
¼ a44f

g

j g
g
j þa45 f

g

jþ1g
g
jþ1

�
þ f

g

j�1g
g
j�1

�
þa46 f

g

jþ1g
g
j

�
þ f

g

j g
g
jþ1þ f

g

j�1g
g
j þ f

g

j g
g
j�1

�
þa47 f

g

jþ1g
g
j�1

�
þ f

g

j�1g
g
jþ1

�
: ð56Þ

The approximation of terms containing uu in (55) requires the evaluation of the quantities ugi;d at the centre

of the main control volumes; for this purpose we use the following compact interpolation scheme:

a49u
g
i�2;j þ a48u

g
i�1;j þ ugi;j þ a48u

g
iþ1;j þ a49u

g
iþ2;j ¼ a50 ungiþ1=2;j

�
þ ungi�1=2;j

�
þ a51 ungiþ3=2;j

�
þ ungi�3=2;j

�
þ a52 ungiþ5=2;j

�
þ ungi�5=2;j

�
: ð57Þ

The calculation of the advective terms involving the mixed product uv requires some interpolation before

Eq. (56) can be applied. Indeed, both terms uniþ1=2;jþ1=2 and vniþ1=2;jþ1=2 must be evaluated. The face-averaged

velocity uniþ1=2;jþ1=2 is obtained by applying Eq. (57) along g

a49u
n
iþ1=2;j�3=2 þ a48u

n
iþ1=2;j�1=2 þ uniþ1=2;jþ1=2 þ a48u

n
iþ1=2;jþ3=2 þ a49u

n
iþ1=2;jþ5=2

¼ a50 ungiþ1=2;j
�

þ ungiþ1=2;jþ1
�
þ a51 ungiþ1=2;j�1

�
þ ungiþ1=2;jþ2

�
þ a52 ungiþ1=2;j�2

�
þ ungiþ1=2;jþ3

�
ð58Þ

the term vniþ1=2;jþ1=2 is obtained by compact interpolation along n

a54v
n
iþ5=2;jþ1=2 þ a53v

n
iþ3=2;jþ1=2 þ vniþ1=2;jþ1=2 þ a53v

n
i�1=2;jþ1=2 þ a54v

n
i�3=2;jþ1=2

¼ a55 vniþ1;jþ1=2
�

þ vni;jþ1=2
�
þ a56 vniþ2;jþ1=2

�
þ vni�1;jþ1=2

�
þ a57 vniþ3;jþ1=2

�
þ vni�2;jþ1=2

�
: ð59Þ
3.2.3. Diffusive terms

With reference to the diffusive terms in the u-momentum equation, integration over a staggered CV leads
to Z

DSu

ou
on

dS ¼
Z
DSeu

ou
on

dS �
Z
DSwu

ou
on

dS þ
Z
DSnu

ou
on

dS �
Z
DSsu

ou
on

dS: ð60Þ

By introducing the coordinate transformation and referring to Cartesian gridsZ
DSeu

ou
on

dn
dx

dy
dg

dg�
Z
DSwu

ou
on

dn
dx

dy
dg

dgþ
Z
DSnu

ou
og

dg
dy

dx
dn

dn�
Z
DSsu

ou
og

dg
dy

dx
dn

dn:

We present the approximation of the integral on DSe
u, the others being treated similarly. Since x ¼ x nð Þ for

Cartesian grids, it turns out that
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Z
DSeu

ou
on

dn
dx

dy
dg

dg ¼ dn
dx

����
iþ1

Z
DSeu

ou
on

dy
dg

dg; ð61Þ

where the index iþ 1 states that DSe
u is the east face of a staggered CV along n. The integral on the right-

hand side in (61) can be approximated by the compact averaging scheme (56), moving along g, provided that

the terms ou
g
=oniþ1=2;d have been previously evaluated. The differentiation is carried out by a compact

differentiation scheme

a59
ou
on

g

i�2;j
þ a58

ou
on

g

i�1;j
þ ou
on

g

i;j
þ a58

ou
on

g

iþ1;j
þ a59

ou
on

g

iþ2;j

¼ a60
Dn

ungiþ1=2;j
h

� ungi�1=2;j
i
þ a61

Dn
ungiþ3=2;j
h

� ungi�3=2;j
i
þ a62

Dn
ungiþ5=2;j
h

� ungi�5=2;j
i
: ð62Þ

Asymmetric equations were derived for the calculations near the boundaries.

3.2.4. Pressure terms

The pressure forces, acting on the faces of a staggered CV, have to be approximated by using the

available pressure variables, that is pngi;j . Presenting the fractional-step method, it will be shown that a

second-order approximation could suffice

pxi;j � pngi;j � pyi;j: ð63Þ

We derived also a compact high-order scheme

pyi;j ¼
1

Dyj

Z yj�1=2

yjþ1=2

p dy ¼ 1

Dyj

Z gj�1=2

gjþ1=2

p
dy
dg

dg: ð64Þ

As in the evaluation of previous integrals of products, we use Eq. (56) in order to approximate the last

integral in Eq. (64). Before doing that, we need an approximation for pgi;d at the centre of the collocated

CVs, which is obtained by a compact deconvolution scheme

a64p
g
iþ2;j þ a63p

g
iþ1;j þ pgi;j þ a63p

g
i�1;j þ a64p

g
i�2;j ¼ a65 pngiþ1;j

�
þ pngi�1;j

�
þ a66 pngiþ2;j

�
þ pngi�2;j

�
þ a67p

ng
i;j : ð65Þ

Asymmetric equations, as usual, were derived near the boundaries.

3.3. Fractional-step method and continuity equation

As mentioned before, the fractional-step algorithm by Gresho [28] leads to a Poisson�s equation for the
pseudo-pressure, which allows to project the provisional velocity field u� into a divergence-free velocity field

unþ1, which is a better approximation of the true velocity field at the new time step. The projection step is

performed just once on each time step, leading to a second-order time-accurate velocity field [28]. The

correction term r/ is of order ðDtÞ2; thus, if Eqs. (43) and (44) were discretized in space with second-order

accuracy, the additional error introduced by the fractional-step method would be of order ðDtÞ2ðDxÞ2, and
thus would not degrade excessively the accuracy of the whole method. By repeating iteratively the pro-

jection step within each time step, the provisional velocity field will eventually satisfy both the discrete

momentum and continuity equations [29]; then, when using iteratively the fractional-step method, it is
sufficient to discretize the term r � u� with high spatial accuracy, in order to derive a highly accurate

projected velocity field unþ1.
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The left-hand side in Poisson�s equation is thus discretized by a standard second-order methodZ
DS

o/
on

dS ¼
Z
DS

u� � n dS; ð66Þ
Z
DS

o/
on

dS �
/iþ1;j � /i;j

dxi

	
�
/i;j � /i�1;j

dxi�1



Dyj þ

/i;jþ1 � /i;j

dyj

	
�
/i;j � /i;j�1

dyj�1



Dxi:

The right-hand side can be expressed exactly as

uyiþ1=2;j
�

� uyi�1=2;j
�
Dyj þ vxi;jþ1=2

�
� vxi;j�1=2

�
Dxi: ð67Þ

The face-averaged velocities in (67) are evaluated in the transformed plane

uyiþ1=2;j ¼
1

Dyj

Z yjþ1=2

yj�1=2

u dy ¼ 1

Dyj

Z gjþ1=2

gj�1=2

u
dy
dg

dg: ð68Þ

The integral averaging in (68) is performed by using (56). The compact deconvolution (65) is used to ap-

proximate ug
dþ1=2;j from ung

dþ1=2;j.

The discrete Poisson�s equation is then solved by a Matrix-Decomposition method [30], and values for

/
xy
are obtained. The corrected velocity field is obtained by the discrete version of (43) as

uyiþ1=2;j ¼ u�yiþ1=2;j �
/iþ1;j � /i;j

dxi
; vxi;jþ1=2 ¼ v�xi;jþ1=2 �

/i;jþ1 � /i;j

dyj
:

It is worth mentioning that, after the correction step (44), we are left with corrected values of, say, uyiþ1=2;j. In
order to recover ugiþ1=2;j we invert the integral averaging Eq. (56). In addition, after evaluating ugiþ1=2;j and,
similarly, vni;jþ1=2, we need to derive the corrected values for ungiþ1=2;j and vngi;jþ1=2, which were assumed as main

unknowns. To this end, we invert the compact deconvolution (65).
The pressure field is updated by (45)

pngi;j � p�ngi;j � 2
/

xy

i;j

Dt
: ð69Þ

By iterating the fractional step, the pressure field is enforced toward the unique solution, allowing the

velocity field to satisfy both the momentum and the continuity equations, to high-order spatial accuracy. In

this limit, even the pressure field is solved with high-order accuracy.

3.4. Deconvolution

At the end of the simulation, the point-values of the velocity components are recovered by recursive

application of the compact deconvolution (65), along both coordinate directions.

3.5. Further characteristics of the proposed methodology

3.5.1. About the use of staggered grids

The staggered grid arrangement was introduced mainly with the aim of avoiding pressure–velocity de-

coupling in second-order finite-volume and finite-difference schemes [14]. This property is conserved by

higher-order finite-difference and finite-volume methods on staggered grids [13]. Pereira et al. [18] showed

that, based on the eigenvalues of the discrete gradient operator, the velocity and pressure fields are coupled
in compact (fourth-order) finite-volume schemes on collocated grids, as long as an odd number of grid-

points is used along each coordinate direction, which in fact does not constitute a serious limitation. This
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property can be proved analytically for fourth-order schemes on uniform grids and periodic or Dirichlet

boundary conditions. However, the strength of the pressure–velocity coupling is still an open issue when

generic schemes, geometries and boundary conditions are involved. Nevertheless, the results of several
numerical tests, carried out by Pereira et al. [18] and by Smirnov et al. [19] with odd numbers of control

volumes along each coordinate direction, do not reveal spurious oscillations related to pressure–velocity

decoupling.

Another favorable property of the staggered grid arrangement is the availability of velocity components

at locations, where they are needed in the discrete continuity equation; in collocated grid arrangements,

these velocity components must be interpolated from quantities defined at the cell centres. Similarly, the

pressure is defined where it is needed, in order to represent the pressure force acting on the staggered

control volumes for the velocity components and, unlike in collocated schemes [17], the discrete repre-
sentation of the pressure gradient in the momentum equations does not require extrapolating the pressure

field to those portions of the boundary, where Dirichlet boundary conditions are enforced on the velocity

field. Despite this favorable properties of the staggered grid arrangement, Sharatchandra and Rhode [31,32]

verified that, in some cases, collocated schemes give more accurate results than their staggered equivalents.

However, Nagarajan et al. [16] arrived to opposite conclusions, reporting that compact finite-difference

schemes on staggered grids are at least as accurate as collocated schemes, but much more robust due to

their better conservation properties.

In view of the above discussion, it is a hard task, at present time, stating a priori which approach, and
under which respect, is better, either collocated or staggered. Further research should possibly focus on the

conservation properties of both methods.

3.5.2. About the use of metrics

Introducing a coordinate transformation, from the physical to a computational domain, is a common

practice in finite-difference schemes [11], and it is well known that a careful treatment of metrics is needed,

in order avoid a sensible reduction of the quality of the results. In addition, the inadequate representation

of metrics can cause relevant conservation errors, which lead to unstable calculations [33]. Finite-volume
approximations can be formulated either in physical or in transformed space [34]; the first approach is

commonly followed with second-order methods, since it leads to more intuitive formulations and does not

require a specific treatment of metrics. Smirnov et al. [19,35] developed a compact finite-volume method

working in physical space; they use Cartesian velocity components in a collocated grid arrangement. Re-

sults of several simulations show that the method is both stable and accurate. A seeming drawback of the

physical approach, in the case of high-order methods, consists in the need of developing compact inter-

polation, differentiation and quadrature formulas directly on the deformed mesh; besides being more

complicate, the derivation of such discrete operators requires a larger number of free coefficients or,
equivalently, of neighboring nodes, in order to reach a given formal order of accuracy, since the truncation

error depends on all coordinate directions [19]. This drawback could become even more severe in three

dimensions.

In this paper, we introduce a coordinate transformation mainly because, based on the works of other

authors, it is reasonable expecting better kinetic energy conservation properties. We recall results by

Vasilyev [15], suggesting that grid-independent differentiation and interpolation schemes seem unavoidable

in order to extend the conservation properties, valid on uniform grids, to Cartesian non-uniform grids. The

validity of this conclusion, demonstrated by Vasilyev [15] in the framework of traditional finite-difference
methods on Cartesian grids, is uncertain for CFV methods; nevertheless, it seems reasonable to infer that

the symmetries of a numerical method, on which the conservation properties are based upon [15], should be

maintained on any grid, which would impose the use of coordinate transformations.

Gamet et al. [36] state that, in the framework of finite-difference schemes, the discretization approach

based on metrics (JT) should be rejected, since it is considerably less accurate than the Fully Integrated
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Metrics (FIM) method, based on compact differentiation in physical space. However, in our opinion, their

arguments are not strikingly conclusive, since they compare the JT and FIM methods by differentiating an

analytical function on a random grid. A boundary-fitted grid, which would be suitable to be used with
compact finite-difference or CFV methods, is usually generated by solving a differential or variational

problem [34], so that it will be generally quite smooth. In addition, it is probably unfair to expect that a JT

method works on a random grid since, rigorously speaking, the Jacobian of the coordinate transformation

cannot be defined, in this case. In Fig. 6, we report the errors obtained in the same test performed by Gamet

et al. [36] using both random and smoothly varying grids; it is evident that, even though the FIM approach

works better on both random and smooth grids, the improvement with respect to the JT method is neg-

ligibly small, if any, on the latter. We used the following grid distributions:

• Random

x ¼ L½nþ Chg�:

• Smooth

x ¼ L n


þ C � 1

2p
sin 2pnð Þ

�
;

where n is the coordinate in the transformed ½0; 1� interval, L ¼ 2p, C ¼ 0:3 and g 2 ½�1; 1� indicates a

sequence of random numbers. The function to be differentiated is

f ðxÞ ¼ cos x0xð þ /0Þ

with

x0 ¼ 4; /0 ¼ 1:

In view of the preceeding discussion, it is evident that there are no clear-cut arguments suggesting which,

between the FIM and the JT approaches, works better with CFV schemes: both have advantages and
Fig. 6. Numerical differentiation of f ðxÞ by fourth-order compact schemes. Squares: JT, random grid, metrics evaluated by compact

schemes; circles: FIM, random grid; triangles: FIM, smooth grid; asterisks: JT, smooth grid, metrics evaluated by compact schemes;

plus signs (hidden by the asterisks): JT, smooth grid, metrics evaluated analytically; solid line: fourth-order slope.
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drawbacks. The FIM approach allows for an easier and more physical derivation of a compact finite-

volume method, while the investigations by Morinishi et al. [13], Vasilyev [15], Verstappen and Veldman

[37] seem to suggest that the conservation properties of the coordinate-transformation approach are
superior.
4. Spectral-like fourth-order compact schemes

Kim and Lee [24] devised a systematic procedure to obtain spectral-like compact schemes, with optimal

resolution properties. A least-squares fitting in the wavenumber space is used, in order to optimize the

resolution properties of a scheme. The weighting function is selected in such a way that the integral error
function can be evaluated explicitly. The spectral-like compact schemes derived in this paper, however, do

not present a natural choice for the weighting function. Following the same procedure proposed in [24], we

derived integral error functions which could indeed be integrated analytically, but we did not succeed in

solving the non-linear system of two equations resulting from the error-minimization requirement, not even

with the aid of a symbolic manipulator [38]. Thus, we used numerical quadrature and minimization. Only

spectral-like symmetric schemes have been investigated, while near the boundaries we resort to the

asymmetric schemes derived for the standard CS4 method.
4.1. Spectral-like compact differentiation

The general equation for a tridiagonal fourth-order, spectral-like compact differentiation scheme in the

domain interior is

a
ou
ox iþ3=2

þ ou
ox iþ1=2

þ a
ou
ox i�1=2

¼ a
Dx

ux
iþ1

�
� ux

i

�
þ b
Dx

ux
iþ2

�
� ux

i�1
�
: ð70Þ

Eq. (70) is written for the one-dimensional case; nevertheless, it can be used in multi-dimensional simu-

lations, by simply averaging each quantity on a cell-width, along the coordinate directions which are not

involved in the differentiation process. By Fourier analysis [24] it is easy to derive the following equation for

the modified wavenumber, ke:

keDx ¼ 2
a sin kDx

2

� �
þ b sin 3kDx

2

� �
1þ 2a cos kDxð Þ

sin kDx
2

� �
kDx
2

: ð71Þ

In order to optimize the resolution properties of (70), we impose the following constraint [24]:

E ¼
R p
0

keDx� kDxð Þ2W 2 �; kDxð Þd kDxð ÞR p
0
W 2 �; kDxð Þd kDxð Þ

;

rE ¼ 0;

W �; kDxð Þ ¼ 1½ þ � cos kDxð Þð � 1=2Þ�2:

ð72Þ

That is, we require the minimization of the integral weighted error function E. The parameter � decreases
progressively the weight of errors introduced at large wavenumbers, which could otherwise introduce
undesired oscillations in the keDx profile [24]. By expanding (70) in Taylor series, it is easy to derive the

following accuracy constraints:
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Order 0 2a� a� 3bþ 1 ¼ 0;

Order 1 a� 1

2
a� 3

2
bþ 1

2
¼ 0;

Order 2
5

4
a� 5

24
a� 13

8
bþ 1

8
¼ 0;

Order 3
13

24
a� 1

16
a� 11

16
bþ 1

48
¼ 0:

ð73Þ

By solving (73) it turns out that

a ¼ 6

5
bþ 1

10
; a ¼ � 3

5
bþ 6

5
: ð74Þ

By substituting (74) into (72), E is made a function of only a7 and �. The minimization requirement (72)

leads to

b ¼ 0:105; � ¼ 0:67: ð75Þ

The resulting effective modified wavenumber keDx is compared in Fig. 7 with the actual wavenumber kDx,
and with the modified wavenumber obtained from the second-order, the standard fourth-order compact

and the sixth-order tridiagonal compact schemes.

4.2. Spectral-like compact interpolation

A tridiagonal spectral-like fourth-order interpolation scheme reads

aui�1=2 þ uiþ1=2 þ auiþ3=2 ¼ aðux
i þ ux

iþ1Þ þ bðux
i�1 þ ux

iþ2Þ: ð76Þ

As remarked in the preceding section, Eq. (76) is written for the one-dimensional case, but can be used also

in two or three dimensions. We now consider uðxÞ as a function that admits a Fourier integral represen-

tation
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Fig. 7. Effective wavenumber for compact differentiation schemes. Solid straight line: exact differentiation; dotted line: ST2; dash-

dotted line: CS4; solid line: OCS4; dashed line: sixth-order symmetric scheme.
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UðkÞ ¼
Z 1

�1
uðxÞ e

�ikxffiffiffiffiffiffi
2p
p dx;

uðxÞ ¼
Z 1

�1
UðkÞ e

ikxffiffiffiffiffiffi
2p
p dk:

ð77Þ

Thus

u xjþ1=2
� �

¼
Z 1

�1
UðkÞ e

ikxjþ1=2ffiffiffiffiffiffi
2p
p dk: ð78Þ

In addition, we define a transfer function H as follows:

ujþ1=2 ¼
Z 1

�1
H kDxð ÞUðkÞ e

ikxjþ1=2ffiffiffiffiffiffi
2p
p dk; ð79Þ

where ujþ1=2 is the discrete approximation to uðxjþ1=2Þ obtained by Eq. (76). By performing the Fourier

transform of Eq. (76) it is easy to show that

H kDxð Þ ¼ 2
a sin kDxð Þ þ b sin 2kDxð Þ � sin kDxð Þ½ �

kDx 1þ 2a cos kDxð Þ½ � : ð80Þ

The closer is H to unity, the better are the resolution properties of (76). By following the same procedure

outlined in Section 4.1 we derived

Order 0 2a� 2a� 2b ¼ �1;
Order 1 a� a� b ¼ �1=2;

Order 2
5

4
a� 7

12
a� 31

12
b ¼ � 1

8
;

Order 3
13

24
a� 5

24
a� 29

24
b ¼ � 1

48
;

ð81Þ
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Fig. 8. Transfer function for the optimal-resolution interpolation scheme. The solid line shows the optimized scheme (OCS4) while the

dashed line corresponds to the standard fourth-order scheme (CS4).
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a ¼ 3bþ 1=4; a ¼ 2a10 þ 3=4: ð82Þ

At this stage, only b is left unknown. It is set by numerically evaluating the minimum of the following
integral error function:

E kDxð Þ ¼
R p
0

H � 1ð Þ2W 2 dkDxR p
0
W 2 dkDx

: ð83Þ

The weighting function W cannot be defined as in (72), since in that case the errors at the highest wave-

numbers would still have too much influence, leading to overshooting in the HðkDxÞ profile. Thus, we tried
several weighting functions, all of them vanishing at kDx ¼ p. Since the results were not strongly dependent

on the actual weighting function, we arbitrarily select a simple function W ¼ 1=2½1þ cosðkDxÞ�. In order to

further limit overshooting, we integrated in the range 0–0.7p. By following this procedure we obtained

b ¼ 4=100. The resulting transfer functions are shown in Fig. 8.
5. Spurious oscillations induced by the spatial discretization

In the presence of a boundary layer the numerical solution is prone to develop spurious cell-to-cell

oscillations, known as wiggles. Central schemes are particularly affected by this problem, in that they do not

introduce any numerical diffusivity [17]. Various expedients are commonly used in order to control the

onset of wiggles. Liu and co-workers [23] proposed the Weighted Compact Schemes for the accurate re-
production of flow discontinuities. Lele [7] used compact filters at the end of each time-step in order to

damp high-wavenumber oscillations. We tested one of such fourth-order compact filters in the solution of

the steady advection–diffusion equation with both the CS4 and the spectral-like scheme, derived in the

previous section (OCS4 hereafter), at increasing cell-P�eclet number; the ability of such filters to control the

onset of wiggles is represented in Fig. 9 for a cell-P�eclet number of 2.5. From the same Fig. 9, it is also

evident that the filtering limits the magnitude of wiggles. In addition, it is worth remarking that the spectral-

like scheme is more prone to develop spurious oscillations than the CS4 scheme.

Patankar [39] studies the onset of wiggles for the one-dimensional, steady advection–diffusion equation.
We apply this analysis to the compact schemes derived in this paper, as briefly outlined in the following.

The dimensionless form of the steady, one-dimensional advection–diffusion equation, defined on the

interval ½0; 1�, subject to two Dirichlet boundary conditions, reads

du
dx
¼ 1

Pe
d2u
dx2

;

u xð ¼ 0Þ ¼ 0;

u xð ¼ 1Þ ¼ 1;

ð84Þ

where Pe is the P�eclet number, based on the whole interval length. A uniform grid is used, with grid spacing

Dx. We focus on the region bounded by the nodes j� 1 and jþ 1, so that Dx ¼ 1=2 and Pe ¼ 2Pc, being Pc
the cell-P�eclet number

Pc ¼
uDx
C

: ð85Þ

The exact solution of (84) is

uðxÞ ¼ e2Pcx � 1

e2Pc � 1
: ð86Þ
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Fig. 9. Boundary layer test for CS4 and optimal schemes. Solid line: exact solution of (84); squares: CS4; triangles: filtered CS4; circles:

OCS4; diamonds: filtered OCS4.
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We aim to determine the value of uj resulting from the selected spatial-discretization schemes. To this end,

we first integrate Eq. (84) over the control volume relative to node j, which is bounded by the endpoints

j� 1=2 and jþ 1=2. The resulting algebraic equation reads

ujþ1=2 � uj�1=2 ¼
1

2Pc

du
dx jþ1=2


� du

dx j�1=2

�
: ð87Þ

Eq. (87) can be approximated by an arbitrary spatial-discretization scheme. The advective and diffusive

fluxes at the locations j� 1=2 are evaluated by using compact interpolation and differentiation equations.

The remaining quantities are obtained from the exact solution (86). As a result, approximations for uj are

derived as functions of Pc.
When both the diffusive and the advective fluxes across the control volume faces are obtained from

compact approximations, Eqs. (12) and (14), the average value of u over the jth control volume results in

uj ¼ ½ð2P 2
c � 9Pc þ 12Þe3Pc þ ð9Pc � 12Þe2Pc þ ð9Pc þ 12ÞePc � 24Pce1=2Pc � 2P 2

c

� 9Pc � 12�e�1=2Pc=½24Pcðe2Pc � 1Þ�: ð88Þ

The deconvolution procedure (16) can then be applied in order to recover point values from cell-averaged

values, leading to

uj ¼ �½e5Pc=2ð324PcÞ þ e3Pcð�1440� 206P 2
c þ 927PcÞ þ e2Pcð1440� 927PcÞ þ ePcð�1440� 927PcÞ

þ 2556PcePc=2 þ 1440þ 206P 2
c þ 927Pc�e�Pc=2=½2232Pcðe2Pc�1Þ�: ð89Þ

It can be observed that

lim
Pc!þ1

uj Pcð Þ ¼ �1; lim
Pc!�1

uj Pcð Þ ¼ þ1 ð90Þ

indicating that the method is not bounded. Similar results can be obtained for the spectral-like scheme

derived in Section 4. The exact solution for uj is compared with results obtained by the proposed compact

schemes in Fig. 10. It is evident that the standard CS4 scheme performs better than the spectral-like, as

could have been expected since improved resolution corresponds to a lower filtering of the shorter wave-

lengths. This feature agrees with the numerical results presented in Fig. 9.
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Fig. 10. Comparison of ujðPcÞ profiles for several discretization schemes. Solid line: exact solution; dashed line: CS4 scheme; dash-

dotted line: OCS4 scheme, as presented in Section 4; dots: ST2.
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6. Results

Simulations have been performed for several one- and two-dimensional flow configurations, for both the

scalar transport and the Navier–Stokes equations, by using different spatial-discretization schemes. Our

purpose is to verify the following issues:
(1) The solution technique we described for the incompressible Navier–Stokes equations allows to retain

the formal order of accuracy of the schemes for the compact interpolation and differentiation. A verifi-

cation of the formal order of accuracy of the proposed method is performed by comparison with the an-

alytical solution of Taylor–Green vortices. The convergence in simulations more close to those of practical

interest is investigated by simulating a lid-driven cavity at Re ¼ 5000 on increasingly fine grids.

(2) The proposed method of dealing with non-uniform grids allows to accurately resolve boundary layer

regions. In addition, the formal order of accuracy of the method is preserved on non-uniform grids.

(3) Spectral-like CFV methods guarantee improved resolution with respect to CFV schemes of even
higher formal accuracy. This issue becomes evident when simulating complex flows on affordable grids,

while it is evident that, in the limit of very fine grids, the scheme with higher asymptotic accuracy will

provide the best results.

(4) As already pointed out by Smirnov et al. [19] and by Nagarajan et al. [16], symmetric compact

schemes are highly sensible to aliasing errors. The use of high-order compact filters [7] is verified to ef-

fectively eliminate aliasing errors, thus leading to stable simulations. Results of several calculations of the

lid-driven cavity at Re ¼ 5000 are reported; without filtering applied to the velocity field, the growth of

instabilities cannot be controlled, while the simulations performed by filtering the advective term at each
time-step are both stable and accurate.

6.1. One-dimensional test cases

In order to compare the resolution characteristics of different spatial-discretization schemes, we simulate

the advection of a Gaussian wave from x ¼ 0:2 to x ¼ 0:6 by a uniform velocity c ¼ 1:0. The initial solution is

u ¼ e� x�x0ð Þ2= 2r2ð Þ ð91Þ
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with r ¼ 0:01 and x0 ¼ 0:2. Periodic boundary conditions are assumed, and the CFL number is kept as

small as 0.002, so that time-discretization errors can be confidently neglected. We aim to focus on the

macroscopic behavior of different spatial-discretization schemes. Several central and upwind schemes are
compared in Fig. 11; QUICK and QUICKEST [40] are considered, since they form the basis for several

advective schemes. The effective advection velocity ce obtained by the central discretization schemes is lower

than the exact velocity c, with CS4 introducing the smallest error. The CS4 scheme obtains better results

than a standard fourth-order scheme, ST4 hereafter, confirming results obtained by the von Neumann

analysis [7], which display better resolution properties for compact schemes, compared to traditional

methods sharing the same asymptotic order of accuracy. The differences among the various schemes can be

better appreciated in Fig. 12, showing the cumulative phase error obtained from the numerical solutions.

The cumulative phase error between the Discrete Fourier Transforms of the exact and a computed solution
is defined by

�# kDxð Þ ¼
Xk
h¼0

e# hDxð Þ
��� � # hDxð Þ

��� 2p
N

; ð92Þ

where the tilde indicates the phase angle for the numerical solution. It is evident that the resolution

properties of the CS4 scheme are superior in the range of kDx between 0 and 1.25. The error at higher
wavenumbers is comparable for all central schemes, as indicated by the parallel slope of all error curves

beyond this range. The two upwind methods show a quite peculiar behavior, since they accumulate large

phase errors at the small wavenumbers, but give raise to smaller phase errors in the high-wavenumber

range, compared to all the central schemes.

The same test case is used in order to investigate the effectiveness of the spectral-like scheme for in-

terpolation. Results obtained on two different grids are shown in Fig. 13. The solution obtained by the

spectral-like scheme displays much smaller oscillations than the corresponding solution, obtained by the

traditional fourth-order compact method, and the wave is better reproduced.
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Fig. 11. Gaussian wave advected to its final position. Solid line: exact solution; triangles: CS4; squares: ST4; dashed line: ST2; dash-

dotted line: QUICK; dotted line: QUICKEST.



Fig. 12. Cumulative phase error for the advection of a Gaussian wave. Triangles: CS4; squares: ST4; dashed line: ST2; dash-dotted

line: QUICK; dotted line: QUICKEST.

Fig. 13. Advection of a Gaussian wave from x ¼ 0:2 to x ¼ 0:6, with advection velocity c ¼ 1:0. Results obtained by both the CS4 and

the OCS4 schemes are compared, on a uniform grid of 160 control volumes. Solid line: analytical solution; dashed line: CS4; dots:

OCS4.
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6.2. Two-dimensional scalar transport equation

The proposed numerical formulation for multi-dimensional problems is tested by simulating the ad-

vection of a sharp cone in a circular path of radius r0 ¼ 0:25, with a rotation period of p=2. The com-

putational domain is a ½0; 1� � ½0; 1� square, while the base diameter of the cone is 0.1. Homogeneous

Dirichlet boundary conditions are imposed. The CS4 scheme is used to simulate one complete revolution of

the cone, on a 64� 64 uniform grid. Fig. 14 compares the final shape of the cone with corresponding re-
sults, obtained by the ST2 scheme on a 128� 128 uniform grid. The cone is faithfully reproduced by the

CS4 scheme, and the energy propagated into the wake is limited, even on such a coarse grid, which allows

for only six control volumes to be enclosed within the base of the cone. On the other hand, the ST2 scheme

is neither able to conserve the cone shape, nor to avoid large oscillations in all the computational domain.



Fig. 14. Final configuration of a sharp cone, advected in a circular path, after a complete revolution: (a) ST2 scheme on a 128� 128

uniform grid; (b) CS4 scheme on a 64� 64 uniform grid; (c) OCS4 scheme on a 64� 64 uniform grid. Dirichlet boundary conditions

are enforced.
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Results obtained by the spectral-like scheme on a 64� 64 uniform grid are shown in Fig. 14(c). The lower

intensity of wiggles shows the improved resolution characteristics of such method.

In order to quantify the influence of the CFV representation of boundary conditions, Fig. 15 shows the

calculated solution, on a 64� 64 uniform grid, with periodic boundary conditions. The wiggles almost

disappear, and an unphysical wave persists only in the cone wake, for the CS4 scheme. With the optimal

resolution scheme, the intensity of the unphysical wave is strongly damped. By comparing Figs. 14 and 15,

it is evident that the use of asymmetric compact schemes near the Dirichlet boundaries does not affect
sensibly the results.

Fig. 15(c) shows the final cone shape obtained by a sixth-order CFV method on a 64� 64 uniform grid.

The fourth-order, spectral-like scheme requires a slightly lower computational effort than the sixth-order

compact scheme and the right choice between the two methods depends on the specific application. The von

Neumann analysis shows that when better resolution is needed an optimized fourth-order scheme should be

chosen. The test of the advection of a sharp cone confirms these theoretical results, being the mean mis-

placement of the cone after one revolution slightly higher when it is performed, on a relatively coarse

64� 64 uniform grid, by the sixth-order compact scheme.
When the flow is inclined with respect to the computational grid, artificial diffusion takes place, with

intensity related to the angle of inclination. This effect is well documented [17,27]. In order to access the

sensitivity of the proposed compact scheme to the grid orientation, we consider the advection of a stepwise

scalar distribution, in the case of zero molecular diffusion. If there were no numerical diffusion, the stepwise

distribution would be transported downstream without any distortion. Upwind schemes are known to

smear the step-discontinuity, while central schemes produce unphysical oscillations. Both the ST2 and CS4

schemes were used, and results obtained on a 32� 32 uniform grid are shown in Fig. 16. In [25] it is ob-

served that compact schemes are much like spectral methods, due to the implicit nature of both discrete
operators. This spectral character can be recognized in Fig. 16, where the computed solution overestimates



Fig. 15. Final configuration of a sharp cone, advected in a circular path, after a complete revolution: (a) CS4 scheme on a 64� 64

uniform grid, with periodic boundary conditions; (b) OCS4 scheme on a 64� 64 uniform grid, with periodic boundary conditions; (c)

sixth-order CFV scheme on a 64� 64 uniform grid with periodic boundary conditions.
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Fig. 16. Advection of a discontinuity. The flow is inclined at 45� with respect to the computational grid. Solid line: exact solution;

dashed line: ST2 scheme; triangles: CS4 scheme.
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the exact scalar distribution, in a narrow region around the discontinuity, giving raise to a sort of Gibbs�
phenomenon. It was verified that the magnitude of the peak does not tend to vanish with increasing grid

resolution, although it gets closer to the discontinuity. The unphysical oscillations produced by the CS4

method are much smaller than those obtained by the ST2 scheme, and are highly localized around the

discontinuity.
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6.3. Two-dimensional laminar Navier–Stokes equations

6.3.1. Simulation of Taylor–Green vortices

The asymptotic order of accuracy of various versions of the proposed CFV method has been determined

by simulating the decay of Taylor–Green vortices. This flow configuration admits an analytical solution

u x; y; tð Þ ¼ � sinðxÞ cos yð Þe�2mt;
v x; y; tð Þ ¼ cosðxÞ sin yð Þe�2mt;

p x; y; tð Þ ¼ 1

4
cos 2xð Þð þ cos 2yð ÞÞe�4mt:

ð93Þ

Table 4 reports absolute and rms errors obtained at time t ¼ 0:05, with a fixed time step of Dt ¼ 10�6, which

accounts for negligible time-discretization errors. Three sets of results are reported, obtained by using a

semi-implicit Crank–Nicolson/Adams–Bashforth fractional-step method. Results A were obtained with a

sixth-order CFV code and enforcing Dirichlet boundary conditions, which are imposed according to (93).

Results B were obtained with a fourth-order CFV code, using periodic boundary conditions. Results C

were obtained with the same method used in case A, except that a non-uniform grid was used. From Table 4

several conclusions can be drawn.

(1) The extension of the proposed CFV methodology to higher than fourth-order accuracy is feasible.

(2) We effectively derived asymmetric, high-order compact schemes for the representation of Dirichlet

boundary conditions.

(3) The proposed method for dealing with non-uniform Cartesian grids is effective, and does not affect the

asymptotic order of accuracy.

(4) The proposed fractional-step method is accurate, and leads to high-order accurate in space results for
both velocity and pressure.

6.4. Two-dimensional lid-driven cavity at Re¼ 1000

The two-dimensional square lid-driven cavity flow at Re ¼ 1000 has been extensively simulated by

various authors [41–43]. The fluid is accelerated from rest and, at this Reynolds number, attains steady state

conditions; streamfunctions obtained by the proposed CFV formulation on a non-uniform 40� 40 grid are

shown in Fig. 17. We simulated this flow configuration on both uniform and non-uniform grids, using the
standard second-order method and the sixth-order CFV scheme. Results from a simulation, obtained with

a standard second-order finite-volume scheme on a uniform, staggered 192� 192 grid, are used as reference;

the accuracy of such reference data can be inferred from Figs. 18(a) and (b), where they are compared with

results from a spectral DNS by Botella and Peyret [41]. The horizontal and vertical velocity components,

obtained by both sixth-order compact and standard second-order schemes, both on uniform or stretched

20� 20 grids, are compared in Fig. 19. It is evident that compact schemes lead to much better results, even
Table 4

Absolute error on the velocity field obtained for the simulation of the decaying Taylor–Green vortices

A B C

10� 10 2.03e)4 5.71e)6 0.0106

20� 20 4.25e)6 3.95e)7 0.0013

40� 40 7.26e)8 2.45e)8 1.194e)4

A: CFV sixth-order scheme with Dirichlet boundary conditions and with uniform grids; B: CFV fourth-order scheme with periodic

boundary conditions and with uniform grids; C: CFV sixth-order method with Dirichlet boundary conditions and with non-uniform

grids.
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Fig. 17. Streamlines for the lid-driven cavity flow at Re ¼ 1000, evaluated by the sixth-order CFV algorithm on a non-uniform 40� 40

grid.
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Fig. 18. Comparison of results from two simulations of the lid-driven cavity at Re ¼ 1000. The solid line represents data from a

second-order finite-volume simulation on a uniform 192� 192 staggered grid; the symbols show results of a spectral DNS by Botella

and Peyret [41]. (a) Horizontal velocity component on the cavity vertical axis. (b) Vertical velocity component on the cavity horizontal

axis.
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on such a coarse grid. Moreover, the grid stretching leads to improved results, regardless to the spatial

discretization used; this shows that the proposed formulation for dealing with non-uniform Cartesian grids

is effective.

6.5. Two-dimensional lid-driven cavity at Re¼ 5000

The simulation of a lid-diven cavity flow at Re ¼ 5000 is used as a more severe test for the robustness of
the proposed method. The flow is laminar and steady, in that transition occurs approximately at Reynolds

greater than 7500 [42]; nevertheless, this test case clearly proves a certain lack of robustness of the method,

compared to the ST2 scheme with a staggered grid arrangement. This is a common problem with high-order

compact schemes, and is related to the high-resolution characteristics of compact schemes at large wave-
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Fig. 19. Comparison of results from several finite-volume simulations of the lid-driven cavity at Re ¼ 1000. Solid line: second-order
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numbers, which renders them more sensitive to aliasing errors [16]. In addition, kinetic energy conservation
is still an open issue for high-order compact schemes, which therefore lack a strong constraint for limiting

the onset of instabilities. High-order compact filtering [7,19] is a well-established practice for the stabil-

ization of compact schemes in incompressible fluid flow simulations and we use a sixth-order filter, as

proposed by Lele [7]

befj�2 þ aefj�1 þ efj þ aefjþ1 þ befjþ2 ¼ aefj þ b
2

fj�1
�

þ fjþ1
�
þ c
2

fj�2
�

þ fjþ2
�
þ d

2
fj�3
�

þ fjþ3
�
: ð94Þ

The transfer function of (94) is:

T kDxð Þ ¼ aþ b cos kDxð Þ þ c cos 2kDxð Þ þ d cos 3kDxð Þ
1þ 2a cos kDxð Þ þ 2b cos 2kDxð Þ : ð95Þ

The coefficients in (94) are determined by imposing the following conditions:

T ð0Þ ¼ T pð Þ ¼ 0;

T 00ð0Þ ¼ T IVð0Þ ¼ T 00ðpÞ ¼ 0;

T a�pð Þ ¼ T �:

The resulting coefficients are functions of a� and T �: the closer are a� to p and T � to 1, the sharper is the

filter. The transfer function (95) is represented in Fig. 20, for several values of the coefficients a� and T �.
Near-wall filtering was either neglected or performed by the symmetric scheme (94), using extrapolated

values at ghost points.

Fig. 21 shows traces of the volume-averaged kinetic energy, acquired during two simulations performed

on a 20� 20 non-uniform grid at Re ¼ 5000. Both simulations assume a zero-velocity field as initial con-
dition; the kinetic energy trace for the filtered flow field attains a plateau, while in the unfiltered simulation

the kinetic energy accumulates within the computational domain.
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Fig. 21. Traces of the volume-averaged kinetic energy for the lid-driven cavity at Re ¼ 5000, sampled during two simulations per-

formed on a 20� 20 non-uniform grid. Solid line: filtered; dashed line: unfiltered.
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In Table 5 we report the minimum value of the streamfunction in the computational domain, evaluated

on several uniform grids by both the filtered CFV and the ST2 schemes. In processing the results for all

simulations, the streamfunction was evaluated by solving a Poisson equation to second-order accuracy.

This approach is consistent with the remark that the minimum of the streamfunction can be evaluated at
most with second-order accuracy, on a discrete computational grid. This is not a major drawback, since we

aim just to show that the proposed methodology converges to the correct solution even in simulating a quite

complex flow; in addition these results allow for a rough comparison between the accuracy of the proposed

compact finite-volume schemes and that of the standard second-order finite-volume method. In all the

simulations with the compact schemes, the coefficients a� and T � were assumed as 0.95 and 0.95, corre-

sponding to a very sharp filter.

6.6. Differentially heated cavity at Pr¼ 0

The simulation of a differentially heated cavity flow is performed to investigate the capability of the

proposed CFV method to reproduce unsteady phenomena within closed domains. The geometry and



Table 5

Minimum value of the streamfunction for the lid-driven cavity at Re ¼ 5000

Grid CS ST2

40� 40 )0.0578776 )0.0448441
80� 80 )0.0606934 )0.0545659
160� 160 )0.0621273 )0.0599278
320� 320 )0.0626347 )0.0618647

CS refers to the proposed sixth-order compact method. ST2 refers to the standard second-order finite-volume method. The

streamfunction is zero on the boundary.
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boundary conditions are illustrated in Fig. 22, representing a rectangular cavity of height H and length

L ¼ 4H . Top and bottom walls are adiabatic (oT=on ¼ 0) and vertical surfaces are kept at constant uniform

temperature. The left wall is warm at temperature Th while the right wall is cold at temperature Tc. The
temperature scale is defined as the difference between the warm and cold wall, i.e. DT ¼ Th � Tc. The
boundary conditions are summarized in (96)

u ¼ 0 at x ¼ 0; L; y ¼ 0;H ;

T ¼ Th at x ¼ 0;

T ¼ Tc at x ¼ L;

oT=on ¼ 0 at y ¼ 0;H :

ð96Þ

The Grashof number equals 1:2� 105, where Gr is based on the cavity height. Infinite thermal diffusivity is

assumed, and thus the value of the Prandtl number is zero. Advection is therefore negligible and the en-

thalpy equation yields the following temperature distribution:

T ¼ T ðxÞ ¼ Tc þ
x
L

Thð � TcÞ: ð97Þ

Practically, the energy equation is not solved in the computations, but rather the solution for the tem-

perature field (97) is inserted as the buoyancy term into the momentum equations, using the Boussinesq

approximation. For this value of Gr the flow displays an oscillatory behavior, with a known frequency [42].

The computations are performed with the Crank–Nicolson/Adams–Bashforth time-stepping scheme,

with Dt ¼ 0:0005, corresponding to a maximum CFL number of 0.015, which ensures that the time dis-

cretization errors are negligible. Two uniform grids are considered, namely a 64� 16 and a 128� 32. Both
grids lead the correct oscillatory behavior. Characteristic flow patterns at different time instants are shown
Fig. 22. Schematic representation of the differentially heated cavity.
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Fig. 23. Flow patterns in the differentially heated cavity; results of a simulation with the sixth-order CFV scheme, on a uniform 64� 16

grid.

Table 6

Comparison of various quantities for the differentially heated cavity flow

Scheme Grid umax vmax f � 102

CFV sixth-order 64� 16 0.45865 0.45141 5.372

128� 32 0.47019 0.4589 5.175

Nobile [42] 128� 32 0.4624 0.4401 4.981

256� 64 0.4689 0.4552 5.078

Behnia et al. [43] 321� 81 0.4694 0.4577 5.159

umax is the maximum horizontal velocity at x=H ¼ 1; vmax is the maximum vertical velocity at y=H ¼ 0:5; f is the time-frequency of

the most energetic mode in the Fourier spectrum of a given quantity.
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in Fig. 23, for the 64� 16 grid. The flow oscillates between one and three vortices patterns, as expected

[42,43]. Table 6 compares results of different authors. The maximum values of the velocity components

during one complete flow cycle and the dominant oscillation frequency are usually reported for compar-

ison. The scattering of the results reported in Table 6 confirms that such data are not suitable for accuracy

comparisons. However, all data are sufficiently close to each other, to state that the proposed CFV method

is able to simulate complex transient phenomena.
7. Concluding remarks

Compact spatial-discretization schemes are a state-of-the-art technology in the numerical simulation of

turbulent flows, since they combine high resolution with short computational stencils. While compact finite-

difference methods have been extensively used in direct and large eddy simulations of both compressible

and incompressible flows, the development of compact finite-volume algorithms is quite recent. Papers by

Pereira et al. [18], Kobayashi [25], Kim and Lee [24] and Smirnov et al. [19] provide some guidelines, in that
they select cell-averaged quantities as main unknowns, propose fully coupled solution strategies for the

Navier–Stokes equations and address the issue of spectral-like compact schemes. While Pereira et al. [18]

devote a marginal part of their work to the extension of CFV schemes to general coordinate systems, papers

by Smirnov et al. [19,35] report extensively on this issue, by presenting results of several two- and three-
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dimensional flow simulations on both Cartesian and boundary-fitted grids. They do not introduce metrics,

and work directly in the physical space.

All papers cited above refer to collocated grid arrangements. The main contribution of our work is the
introduction of Cartesian, non-uniform staggered grids. In the paper, we provide our view about the

usefulness of introducing the staggered grid arrangement in the development of CFV methods. Though

further investigation is needed in order to adequately investigate the properties of compact finite-volume

schemes on staggered grids, with particular reference to the issue of kinetic-energy conservation, results

by other authors suggest that the staggered arrangement could be beneficial in improving the robustness

and conservation properties of compact schemes [16]. Pereira et al. [18] show that, under particular

assumptions, it is possible to avoid velocity–pressure decoupling, in the framework of collocated fourth-

order CFV schemes, by simply using odd numbers of nodes along each computational direction; both
Pereira et al. [18] and Smirnov et al. [19,35] verify that such approach leads to oscillations-free velocity

fields, even in more general conditions. Nevertheless, the staggering is, up to date, the only inherent cure

for avoiding the velocity–pressure decoupling, regardless the number of nodes and the type of boundary

conditions.

Even in the simple framework of Cartesian grids, we proved the usefulness of coordinate transforma-

tions in order to apply the CFV method on non-uniform grids. The compact differentiation and interpo-

lation schemes developed on uniform grids can be directly applied to non-uniform grids, in order to

approximate both the physical quantities and, in case, the metrics. Of course, the use of coordinate
transformations is not free of drawbacks. Some care must be taken in the discretization of metrics [33], in

order to avoid instabilities. In addition, results by other authors indicate that developing the compact

schemes directly on the physical grid, thus using variable coefficients in the compact equations, leads to very

accurate results even on grids affected by severe non-uniformity [36]. Nevertheless, results by other authors

indicate that the introduction of coordinate transformations is required, in order to derive energy-con-

serving schemes [13,15,37]; in addition, we show that, though the FIM approach allows to obtain con-

vergent results even on random grids, while the JT method does not, on smoothly varying meshes both

methods lead to comparable accuracy. Moreover, the use of metrics makes clear that 1D compact schemes
can be used, even in multi-dimensional problems.

Segregated schemes are widely adopted in direct and large eddy simulation of turbulent flows, since large

computational savings can be obtained from the serial solution of momentum and continuity equations.

We propose a CFV segregated method based on the Projection 2 fractional-step algorithm by Gresho [28],

which proved to be effective in the simulation of both steady and unsteady flows. The key point of our

approach is the bijective compact relation between cell-averaged and face-averaged quantities. In addition,

we verify that a second-order discretization of Poisson�s equation for pseudo-pressure does not deteriorate

the order of accuracy of higher-order methods, since the second-order spatial error is scaled by ðDtÞ2, while
it vanishes if using an iterative fractional-step approach.

The use of semi-implicit time-stepping schemes requires the simultaneous solution of compact differ-

entiation equations and momentum equations. We propose an efficient algorithm based on the Alternate

Direction Implicit method [17], coupled with a direct solver for almost-banded coefficient matrices, pre-

sented in Appendix B. The off-diagonal quantities, arising from the compact discretization of the transient

term unþ1, are treated by deferred correction, in order to maintain the direction-splitting of the ADI

method.

Spectral-like schemes recognize the importance of resolution characteristics, with respect to asymptotic
accuracy. We develop and test spectral-like schemes for both interpolation and differentiation, based on the

usual least-squares approach [19,25]. The advection of a sharp cone around a circular path is used in order

to show the superior characteristics of this method with respect to a fourth-order traditional compact

scheme, and its slightly better behavior even with respect to a compact sixth-order method, at least when

the test case is reproduced on a rather coarse grid.
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We show that CFV symmetric schemes are prone to develop unphysical oscillations, for excessively large

values of the cell-P�eclet number. Spectral-like schemes prove to perform even worse than traditional CFV

schemes, in this respect. The compact filtering by Lele [7] is efficient in damping wiggles; the combination of
the spectral-like CFV scheme with a fourth-order compact filtering seems particularly appealing, in this

respect. The simulation of the lid-driven cavity at Re ¼ 5000 serves as a more severe test for evaluating the

robustness of the proposed compact method. While on fine enough grids there is no need of any filtering

procedure, in order to obtain stable simulations, on coarse grids, a compact high-order filtering is effective

in stabilizing the computation, without sensibly affecting the accuracy of the results.
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Appendix A. Extension to three dimensions

The compact equations derived in this paper can be easily extended to the three-dimensional case. As an

example, we present the evaluation of the advective flux of u momentum across the upper z ¼ constant face

of a u-staggered control volume, which, with the present notation, is indicated by uwxy
iþ1=2;j;kþ1=2. A uniform

grid is assumed. The location of some representative variables, involved in the evaluation of this term, is

indicated in Fig. 24. We derive only symmetric equations to be used in the interior of the computational

domain.
The uwxy

iþ1=2;j;kþ1=2-momentum flux is defined by a double integration

uwxy
iþ1=2;j;kþ1=2 ¼

1

DxDy

Z xiþ1

xi

Z yjþ1=2

yj�1=2

u x; y; zkþ1=2
� �

w x; y; zkþ1=2
� �

dx dy: ðA:1Þ

The integral in (A.1) can be approximated, to fourth-order accuracy, by the two-dimensional equation (49),

or by the one-dimensional scheme (56). If using (56), symmetry reasons would suggest to approximate (A.1)

by the average of (56), evaluated both along x and y:
Fig. 24. Three-dimensional control volumes, reporting the location of some unknowns.



M. Piller, E. Stalio / Journal of Computational Physics 197 (2004) 299–340 337
a43uw
xy
iþ3=2;j;kþ1=2 þ uwxy

iþ1=2;j;kþ1=2 þ a43uw
xy
i�1=2;j;kþ1=2

¼ a44u
xy
iþ1=2;j;kþ1=2w

xy
iþ1=2;j;kþ1=2 þ a45 uxyiþ3=2;j;kþ1=2w

xy
iþ3=2;j;kþ1=2

h
þ uxyi�1=2;j;kþ1=2w

xy
i�1=2;j;kþ1=2

i
þ a46 uxyiþ3=2;j;kþ1=2w

xy
iþ1=2;j;kþ1=2

h
þ uxyiþ1=2;j;kþ1=2w

xy
iþ3=2;j;kþ1=2 þ uxyi�1=2;j;kþ1=2w

xy
iþ1=2;j;kþ1=2

þ uxyiþ1=2;j;kþ1=2w
xy
i�1=2;j;kþ1=2

i
þ a47 uxyiþ3=2;j;kþ1=2w

xy
i�1=2;j;kþ1=2

h
þ uxyi�1=2;j;kþ1=2w

xy
iþ3=2;j;kþ1=2

i
;

a43uw
xy
iþ1=2;jþ1;kþ1=2 þ uwxy

iþ1=2;j;kþ1=2 þ a43uw
xy
iþ1=2;j�1;kþ1=2

¼ a44u
xy
iþ1=2;j;kþ1=2w

xy
iþ1=2;j;kþ1=2 þ a45 uxyiþ1=2;jþ1;kþ1=2w

xy
iþ1=2;jþ1;kþ1=2

h
þ uxyiþ1=2;j�1;kþ1=2w

xy
iþ1=2;j�1;kþ1=2

i
þ a46 uxyiþ1=2;jþ1;kþ1=2w

xy
iþ1=2;j;kþ1=2

h
þ uxyiþ1=2;j;kþ1=2w

xy
iþ1=2;jþ1;kþ1=2 þ uxyiþ1=2;j�1;kþ1=2w

xy
iþ1=2;j;kþ1=2

þ uxyiþ1=2;j;kþ1=2w
xy
iþ1=2;j�1;kþ1=2

i
þ a47 uxyiþ1=2;jþ1;kþ1=2w

xy
iþ1=2;j�1;kþ1=2

h
þ uxyiþ1=2;j�1;kþ1=2w

xy
iþ1=2;jþ1;kþ1=2

i
:

The unknown fluxes uxy:;j;kþ1=2 and wxy
:;j;kþ1=2 can be obtained by the compact interpolation equations (57) and

(59), respectively:

a49u
xy
iþ1=2;j;kþ5=2 þ a48u

xy
iþ1=2;j;kþ3=2 þ uxyiþ1=2;j;kþ1=2 þ a48u

xy
iþ1=2;j;k�1=2 þ a49u

xy
iþ1=2;j;k�3=2

¼ a50 uxyziþ1=2;j;k

h
þ uxyziþ1=2;j;kþ1

i
þ a51 uxyziþ1=2;j;k�1

h
þ uxyziþ1=2;j;kþ2

i
þ a52 uxyziþ1=2;j;k�2

h
þ uxyziþ1=2;j;kþ3

i
;

a54w
xy
iþ5=2;j;kþ1=2 þ a53w

xy
iþ3=2;j;kþ1=2 þ wxy

iþ1=2;j;kþ1=2 þ a53w
xy
i�1=2;j;kþ1=2 þ a54w

xy
i�3=2;j;kþ1=2

¼ a55 wxy
i;j;kþ1=2

h
þ wxy

iþ1;j;kþ1=2

i
þ a56 wxy

i�1;j;kþ1=2

h
þ wxy

iþ2;j;kþ1=2

i
þ a57 wxy

i�2;j;kþ1=2

h
þ wxy

iþ3;j;kþ1=2

i
:

The quantities uxyz and wxyz are assumed as main unknowns and are evaluated from the coupled solution of

the conservation and compact equations. The fluxes uxy and wxy are derived from the main unknowns by

inverting the bijective relation (65) between cell-averaged values and fluxes; with reference to the w velocity

component

a64w
xy
i;j;kþ5=2 þ a63w

xy
i;j;kþ3=2 þ wxy

i;j;kþ1=2 þ a63w
xy
i;j;k�1=2 þ a64w

xy
i;j;k�3=2

¼ a65 wxyz
i;j;kþ3=2

h
þ wxyz

i;j;k�1=2

i
þ a66 wxyz

i;j;kþ5=2

h
þ wxyz

i;j;k�3=2

i
þ a67w

xyz
i;j;kþ1=2:
Appendix B. Solution of almost-banded algebraic linear systems

It was shown that the discretization of the transport equation by a semi-implicit time-stepping scheme,

while using compact schemes for the spatial discretization, requires the solution of an algebraic linear

system at each time-step, with a characteristic coefficient matrix, represented in Fig. 25. In order to solve the

system by an efficient numerical method of linear complexity, we exploited the almost-banded structure of
the coefficient matrix. For general boundary conditions, this structure involves the first N1 and the last N2

full rows, Lb sub-diagonals and Ub upper-diagonals on the remaining rows. The solution procedure extends

ideas originally proposed by Temperton [21]. He focused on the solution of cyclic tridiagonal systems. The

present method leads to relevant savings in computational time if the solution of many linear systems,
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Fig. 25. Coefficient matrix for a quasi-banded linear system.
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sharing the same coefficient matrix, is required. This circumstance is motivated by the relevant number of

operations required in the initialization phase. The main points of the method are outlined next.

The initialization phase has to be performed once and for all at the beginning of the simulation, and

consists of the following substeps:

(1) Inversion of the coefficient matrix A ¼ ðai;jÞ; iterative methods can be convenient in the case of large

systems. Store the first N1 and the last N2 rows of the inverse matrix B ¼ ðbijÞ ¼ A�1.
(2) The terms ðaijÞ, i; j ¼ N1 þ 1 � � �N � N2, define a banded matrix, with Lb þ Ub þ 1 diagonals, and can be

stored in packed form [44].

(3) The terms ðaijÞ, i ¼ N1 þ 1 � � �N1 þ Lb, j ¼ i� Lb � � � i� 1, and i ¼ N � N2 � Ub þ 1 � � �N � N2,

j ¼ iþ 1 � � � iþ Ub, must be stored, since they will reappear on the right-hand side.

(4) The bounded matrix stored in (2) can now be factorized, for instance by using LU factorization.

The solution phase, to be repeated each time the right-hand side frjg is modified, is carried out by the

following operations:

(1) Evaluation of the unknowns xi, i ¼ 1 � � �N1 and i ¼ N � N2 þ 1 � � �N :

xi ¼ bij
� �

rj: ðB:1Þ

(2) Modification of the right-hand side

ri  ri �
XbjðiÞ
j¼ejðiÞ aijxj; i ¼ N1 þ 1 � � �N1 þ Lb; ejðiÞ ¼ i� Lb; bjðiÞ ¼ i� 1;

i ¼ N � N2 � Ub � � �N � N2; ejðiÞ ¼ iþ 1; bjðiÞ ¼ iþ Ub: ðB:2Þ

(3) Solution of the ðN � N1 � N2Þ � ðN � N1 � N2Þ bounded system, for the unknowns xi, i ¼ N1þ
1 � � �N � N2.
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